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Abstract. This article details a novel numerical scheme to approximate gradient flows for opti-
mal transport (i.e. Wasserstein) metrics. These flows have proved useful to tackle theoretically and
numerically non-linear diffusion equations that model for instance porous media or crowd evolutions.
These gradient flows define a suitable notion of weak solutions for these evolutions and they can
be approximated in a stable way using discrete flows. These discrete flows are implicit Euler time
stepping according to the Wasserstein metric. A bottleneck of these approaches is the high com-
putational load induced by the resolution of each step. Indeed, this corresponds to the resolution
of a convex optimization problem involving a Wasserstein distance to the previous iterate. Follow-
ing several recent works on the approximation of Wasserstein distances, we consider a discrete flow
induced by an entropic regularization of the transportation coupling. This entropic regularization
allows one to trade the initial Wasserstein fidelity term for a Kullback-Leibler divergence, which is
easier to deal with numerically. We show how Kullback-Leibler first order proximal schemes, and
in particular Dykstra’s algorithm, can be used to compute each step of the regularized flow. The
resulting algorithm is both fast, parallelizable and versatile, because it only requires multiplications
by the Gibbs kernel e−c/γ where c is the ground cost and γ > 0 the regularization strength. On
Euclidean domains discretized on an uniform grid, this corresponds to a linear filtering (for instance a
Gaussian filtering when c is the squared Euclidean distance) which can be computed in nearly linear
time. On more general domains, such as (possibly non-convex) shapes or on manifolds discretized by
a triangular mesh, following a recently proposed numerical scheme for optimal transport, this Gibbs
kernel multiplication is approximated by a short-time heat diffusion. We show numerical illustrations
of this method to approximate crowd motions on complicated domains as well as non-linear diffusions
with spatially-varying coefficients.

Key words. Optimal transport, gradient flow, JKO flow, Wasserstein distance, Kullback-Leibler
divergence, Dykstra’s algorithm, crowd motion, non-linear diffusion.
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1. Introduction.

1.1. Optimal Transport.

Optimal transport: from theory to applications. In the last 20 years or so, optimal
transport (OT) has emerged as a foundational tool to analyze diverse problems at the
interface between variational analysis, partial differential equations and probability.
We refer to the book of Villani [64] for an introduction to these topics. It took more
time for this notion to become progressively mainstream in various applications, which
is largely due to the high computation cost of the corresponding (static) linear program
of Kantorovich [44] or to the dynamical formulation of Benamou and Brenier [10].
However, one can now found many relevant uses of OT in very diverse fields such as
astrophysics [41], computer vision [54], computer graphics [16], image processing [68],
statistics [13] and machine learning [31], to name a few.

Entropic regularization. In order to obtain fast approximations of optimal trans-
port distances (a.k.a. Wasserstein distances), there has been a recent revival of the
so-called entropic regularization method. Cuturi [31] presented this scheme in the
machine learning community as a fully parallelizable algorithm which can make the
method scalable to large problems. He shows that this corresponds to the application
of the well-known iterative diagonal scaling algorithm, which is sometime referred to
as Sinkhorn’s algorithm [58, 60, 59] or IPFP [34]. This method is also closely related
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to Schrodinger’s problem [56] of projecting a Gibbs distribution on fixed marginal
constraints, see [55, 47] for recent mathematical accounts on this problem.

The major interest of this entropic approximation is that it allows one to re-cast
various OT-related problems as optimizations over the space of probabilities endowed
with the Kulback-Leibler divergence. The geometry of this space, as well as the
availability of efficient first-order optimization methods, makes this novel formulation
numerically more friendly than the original linear program formulation. The price to
pay for such simple and efficient approaches is the presence of an extra amount of
smoothing (in fact a blurring by the Gibbs kernel) on the obtained results.

Variational problems involving OT. These methods have been used to solve vari-
ous variational optimization problem involving the Wasserstein distance. For instance
the computation of Wasserstein barycenters, initially proposed in [3], has been ap-
proximated by entropic regularization in [32]. A more general class of problems,
including multi-marginal transport (see [53] for recent results on this topic) as well as
generalized Euler’s flows (see [20] for a weak formulation of Euler’s equations), partial
transport (as defined in [40]) and capacity-constrained transport (as defined in [42])
have been approximated by entropic smoothing in [11].

Our work goes in the same direction of applying entropic regularization to speed
up the computation of OT-related problems. Instead of considering here the mini-
mization of functionals involving the Wasserstein distance, we consider here the min-
imization of convex functions according to the Wasserstein distance.

1.2. Previous Works.

Wasserstein flows – theory. It is natural to derive various partial differential
equations (PDE’s) as gradient flows of certain energy functionals. While it is most of
time assumed that the flow follows the gradient as defined through the L2 topology on
some Hilbert space of functions, it is sometime desirable to consider more complicated
metrics. This allows one to capture different PDE’s and also sometime to give a precise
meaning to weak solutions of these PDE’s. One of the most striking example is the
computation of gradient flows over spaces of probability distributions (i.e. positive and
normalized measures) according to the topology defined by the Wasserstein metric.
In this setting, the gradient descent cannot be understood directly as an infinitesimal
explicit descent in the direction of some gradient, but rather as a limit of an implicit
Euler step, as detailed in Section 2.2. This idea corresponds to the notion of gradient
flows in metric spaces exposed in the book [4].

The pioneer paper of Jordan, Kinderlehrer and Otto [43] shows how one recovers
Fokker-Planck diffusions of distributions when one minimizes entropy functionals ac-
cording to the W2 Wasserstein metric. The corresponding method are often referred to
as‘JKO flows” in reference to these authors. Since then, many non-linear PDE’s have
been derived as gradient flows for Wasserstein metrics, including the porous medium
equation [51], the heat equation on manifolds [38], degenerate parabolic PDE’s [1],
Keller-Segel equation [14] and higher order PDE’s [23]. It is also possible to define a
suitable notion of minimizing flow that cannot be written as PDE’s due to the non-
differentiability of the energy functional, a striking example being the model of crowd
motion with congestion proposed by [49],

Wasserstein flows – numerics. The use of Wasserstein methods to discretize non-
linear evolutions is an emerging field of research. The major difficulty lies in the high
computational cost induced by the resolution of each step.

The case of 1-D densities is simpler because the optimal transport metric is a flat
metric when re-parameterized using inverse cumulative functions. This idea is used
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in [45, 14, 15, 2, 48]. In higher dimension, a first class of approaches uses an Eulerian
representation of the discretized density (i.e. on a fixed grid). The resulting problem
can be solved using interior point methods for convex energies [23] or some sort of
linearization in conjunction with finite elements [22] or finite volumes [24] schemes.
A second class of approaches rather uses a Lagrangian representation, which is well
adapted to optimal transport where the thought after solution is obtained by warping
the density at the previous iterate. This idea is at the heart of several schemes, using
discretized warpings [25], particules systems [67], moving meshes [21] and a consistent
discretization of the gradients of convex functions (i.e. optimal transports) [12].

In this article, we use an Eulerian discretization and intend at approximating
flows for energies that are already convex in the usual (Euclidean) sense. The main
goal is to provide a fast and quite versatile discretization scheme through the use of
an entropic smoothing method.

First order scheme with respect to Bregman divergences. First order proximal
optimization schemes have been recently popularized in image processing and machine
learning, due to their simplicity and the low computational cost of each iteration. Each
step typically requires the computation of proximal operators, which are defined as
strictly convex optimization sub-problems, corresponding to an implicit step according
to the L2 distance. We refer to the book [7] for an overview of this large class of
methods and recent developments. Note that these L2 proximal methods have been
used to solve the dynamical formulation of OT [10, 52].

Many of these proximal algorithms have been extended when one replaces the L2

metric by more general Bregman divergences. The prototypical algorithm (although
rarely applicable in its original form) that has been extended to this divergence set-
ting is the so-called proximal point algorithm [37] (see [46] for an extension to more
general, possibly non-smooth, divergences) which corresponds to iteratively applying
the proximal operator of the function to be minimized.

Iterative projections on convex sets is probably the simplest yet useful example
of proximal methods. It has been extended to the general setting of Bregman’s di-
vergences by Bregman [18]. This scheme actually computes the projection on the
intersection of convex sets if these sets are affine, which is a restrictive assumption.
The natural extension of iterative projections to generic closed convex sets is the so-
called Dykstra’s algorithm [36, 30], which can be interpreted as a block-coordinate
optimization on the dual problem. Dykstra’s method has been extended to the special
case of half-spaces in [26] and to generic closed convex sets in [9, 19]. Actually, as
we show in Section 3.2, this result extends to arbitrary proper lower-semicontinuous
convex functions (that are not necessarily indicators of closed convex sets). Note that
such an extension is well-known for the case of the L2 metric [6].

While in this paper we only make use of Dykstra’s algorithm, it should be noted
that many more proximal splitting algorithms are available in this Bregman’s diver-
gences setting, such as Douglas-Rachford and ADMM [65], primal-dual algorithms [27]
and hybrid proximal point algorithms [61]

1.3. Contributions. In this paper, we present a novel numerical scheme to
compute approximations of discrete gradient flows for Wasserstein metrics. The ap-
proximation is performed by an entropic smoothing of the original OT distance. Each
step is computed as the resolution of a convex but possibly non-smooth optimization
problem involving a Kulback-Leibler divergence to some Gibbs kernel. We thus pro-
pose in Section 3 to solve it using an extension of Dykstra’s algorithm to this class of
problems, for which we prove the convergence to the solution. Our main finding is that
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this scheme is both simple to implement and competitive in term of computational
speed, since it only requires multiplications with the Gibbs kernel, which, for many
practical scenarios, can be achieved in nearly linear time. We illustrate in Secton 4
this point by applications to a crowd motion model involving a non-smooth congestion
term and to non-linear diffusions with spatially varying coefficients. Lastly, Section 5
presents a generalization of the proposed algorithm to the case were several couplings
are optimized. We show the usefulness of this generalization to compute the gradient
flow of a Wasserstein attraction term with congestion and to compute evolution of
several coupled densities.

The code to reproduce the numerical part of this article is available online1

1.4. Notations. In the following we consider either vectors p ∈ RN (N being
the number of discretization points) that are usually in the probability simplex

ΣN
def.
=
{
p ∈ RN+ ;

∑N
i=1 pi = 1

}
(1.1)

and couplings, that are matrices π ∈ RN×N+ . We denote 〈p, q〉 =
∑N
i=1 piqi the

canonical inner product on RN and similarly on RN×N .
For some set C ⊂ RQ (typically Q = N or Q = N × N), we define its indicator

function as

∀ a ∈ RQ, ιC(a)
def.
=

{
0 if a ∈ C,
+∞ otherwise.

To ease notations, we define� and ·· as being entry-wise operations, i.e. a�b def.
= (aibi)i

and a
b

def.
= (ai/bi)i. We denote as 1

def.
= (1, . . . , 1)T ∈ RN the vector filled with ones.

We define

∀ ` ∈ N, [`]2
def.
=

{
1 if ` is odd,
2 if ` is even.

(1.2)

We define minus the entropy on both vectors and couplings (and we make this
distinction on purpose to ease the description of the proposed methods) as

∀ p ∈ RN , Ē(p)
def.
=

N∑
i=1

pi(log(pi)− 1) + ιR+(pi), (1.3)

∀π ∈ RN×N , E(π)
def.
=

Q∑
i,j=1

πi,j(log(πi,j)− 1) + ιR+(πi,j), (1.4)

with the convention that 0 log(0) = 0.
We define the Kulback-Leibler divergence on both vectors and couplings as

∀ (p, q) ∈ RN+ × RN+,∗, KL(p|q) def.
=

Q∑
i=1

pi log

(
pi
qi

)
− pi + qi, (1.5)

∀ (π, ξ) ∈ RN×N+ × RN×N+,∗ , KL(π|ξ) def.
=

Q∑
i,j=1

πi,j log

(
πi,j
ξi,j

)
− πi,j + ξi,j . (1.6)

1https://github.com/gpeyre/2015-SIIMS-wasserstein-jko/.
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2. Entropic Discrete JKO Flows. In this article, we consider discrete flows
(i.e. evolutions are discretized in time) of discrete probability distributions (i.e. the
space is also discretized, and we deal with finite dimensional problems). More pre-
cisely, we consider a computational grid {xi}Ni=1 of N points, which can be understood
for instance as an uniform grid in a sub-set of Rd (in the numerical illustrations of
Section 4 we consider d = 2) or as vertices of a triangulation of a surface. We thus
consider discrete probability measures on this set of points, which can be understood
as sums of Dirac masses located at the xi’s locations, and which we represent in the
following as vectors p ∈ ΣN in the simplex as defined in (1.1).

2.1. Entropic Regularization of Wasserstein Distance. Discretized opti-
mal transport of such discrete measure is defined according to some ground cost
c ∈ RN×N . A typical scenario is when xi ∈ Rd are points in the Euclidean space
and one considers ci,j = ||xi − xj ||α, corresponding to the definition of Wasserstein
distances. The case α = 1 corresponds to Monge’s original problem, and α = 2 to the
so-called W2 metric, which is by far the most studied case because of its geometrical
properties [64]. A natural extension is to consider points xi on a smooth manifoldM
and to define ci,j = dM(xi, xj)

α where dM is the geodesic distance on the manifold.
Following several recent works (see Sections 1.2), the entropic-regularized trans-

portation distance between (p, q) ∈ Σ2
N for a ground cost c ∈ RN×N is

Wγ(p, q)
def.
= min

π∈Π(p,q)
〈c, π〉+ γE(π)

for some regularization parameter γ > 0, where the set of couplings with prescribed
marginals (p, q) is

Π(p, q)
def.
=
{
π ∈ RN×N+ ; π1 = p, πT1 = q

}
.

The case γ = 0 corresponds to the classical, un-regularized, optimal transport, and
is a linear program. The case γ > 0 corresponds to a strictly convex minimization
problem, where E plays the role of a barrier function of the positive octant making the
optimization problem better conditioned numerically. But there is more than merely
a strict-convexification of the original functional, otherwise one could have settle for
more classical log-barrier routinely used in interior-point methods [50]. Algebraic
properties of the entropy, and its close relationship with the Kulback-Leibler (KL)
divergence (1.5) (see Section 3.2 for a precise statement) indeed enables closed-form
solutions for the various marginal projections problems encountered in OT problems
(see for instance Proposition 3.1).

It is important to remind that Wγ is not a distance for γ > 0, and we refer to
Section 5.3 for a discussion on the impact of this deficiency.

2.2. JKO Stepping. Following the initial work of [43] (which gives the name of
the method, “JKO flows”), it is possible to discretize various non-linear PDE’s as a
gradient flow of a functional f using implicit gradient step with respect to a Wasser-
stein distance. Our method relies on the idea of replacing the initial Wasserstein
metric by its entropic regularized approximation.

A entropically regularized JKO iteration is an implicit descent descent step with
respect to the Wγ “metric”. To be consistent with notations introduced in the re-
maining parts of this article, we thus refer to it as a proximal operator according to
Wγ , and its definition reads, for τ > 0,

∀ q ∈ RN , Prox
Wγ

τf (q)
def.
= argmin

p∈ΣN

Wγ(p, q) + τf(p). (2.1)
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Note that since p 7→Wγ(p, q) is a strictly convex and coercive function, this operator
is uniquely defined.

Starting from some fixed discrete density pt=0 ∈ ΣN , one defines the discrete JKO
follow as

∀ t > 0, pt+1
def.
= Prox

Wγt

τtf
(pt), (2.2)

where τt > 0 is the step size, γt > 0 the entropic regularization parameter. Note that
we allow here these parameters to vary during the iterations, although we use fixed
parameters in the numerical sections 4 and 5.

When ci,j = dM(xi, xj)
2 (the geodesic distance squared on some smooth manifold

M), f is smooth and γ = 0 (no entropic regularization), a formal computation shows
that this scheme discretizes, as (τ, 1/N)→ 0, the PDE

∂p

∂t
= divM (p∇M(f ′(p))) ,

where divM and ∇M are the gradient and divergence operators on the manifold M,
and f ′ is the differential of f (the gradient for the L2 metric onM). We refer to [38]
for a proof of this relationship when f is an entropy on a manifold.

For instance, in the case where f(p) = Ē(p) + 〈p, w〉, this discrete flow thus
discretizes a linear diffusion-advection on the manifold

∂p

∂t
= ∆M(p) + divM(pz) where z = ∇M(w).

so that the mass get advected by the vector field z.

2.3. KL Proximal Operators. In order for the method that we propose to be
applicable, the function f must be convex and should be “simple” in the sense that
one should be able to compute easily its proximal operator for the KL divergence.
Similarly to (2.1), this proximal operator is defined as

∀ q ∈ RN , ProxKL
τf (q)

def.
= argmin

p∈RN+
KL(p|q) + τf(p). (2.3)

Note that since p 7→ KL(p|q) is a strictly convex and coercive function, this operator
is uniquely defined. Section (4) shows two examples of such “simple” functions: an
indicator of a box constraint (for crowd movement) and generalized entropies (for
non-linear diffusions).

The underlying rationale behind the framework we propose in this article is that,

while it is in general impossible to directly compute the operator Prox
Wγ

τf , there are

many functionals for which ProxKL
τf is accessible either in closed form, or through a

fast and precise algorithm. We will thus trade the application of a single implicit Wγ

proximal step by the iterative application of several KL implicit proximal steps. Note
that, in particular, f does not need to be smooth, which is crucial to model non-PDE
evolutions such as crowd movements with congestion [49].

The main property of the KL proximal operator are recalled in Appendix A.

3. A Bregman Proximal Splitting Approach. In this section, we show how
to re-formulate a single entropic regularized JKO step in order to introduce a KL
divergence penalty. This is useful to allows for the application of generalized first
order proximal methods.
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3.1. Reformulation as a KL Minimization. We consider a single time step

t, and denoting q
def.
= pt the previous iterate of the flow, one can re-write the JKO

stepping operator (2.1) as

Prox
Wγ

τf (q) = π1

where π ∈ RN×N solves the following strictly convex optimization problem

min
π
〈c, π〉+ γE(π) + τf(π1) + ιCq (π) (3.1)

where we introduced the constraint set

Cq
def.
=
{
π ∈ RN×N ; πT1 = q

}
.

The initial formulation (3.1) can be re-cast as

min
π

KL(π|ξ) + ϕ1(π) + ϕ2(π) where

{
ϕ1(π)

def.
= ιCq (π),

ϕ2(π)
def.
= τ

γ f(π1),
(3.2)

where we defined the Gibbs kernel ξ as

ξ
def.
= e−c/γ ∈ RN×N+,∗ .

3.2. Dykstra Algorithm with Bregman Divergences.
Bregman divergence and proximal map. In order to give a more general treatment

of optimization problems of the form (3.2), that can be useful beyond the particular
context of this article, we consider a generic Bregman divergence DΓ, defined on some
convex set D.

We follow [9] and define a Bregman divergence (see for instance) as

∀ (π, ξ) ∈ D × int(D), DΓ(π|ξ) = Γ(π)− Γ(ξ)− 〈∇Γ(ξ), π − ξ〉.

where Γ is a strictly convex function, smooth on int(D) where D = dom(Γ) such that
its Legendre transform

Γ∗(ρ) = max
π∈D

〈π, ρ〉 − Γ(π),

is also smooth and strictly convex. In particular, one has that ∇Γ and ∇Γ∗ are
bijective maps between int(D) and int(dom(Γ∗)) such that ∇Γ∗ = ∇Γ−1.

For Γ = || · ||2, one recovers the Euclidean norm DΓ = || · ||2. One has KL = DΓ for
Γ(π) = E(π), which is cased we used to tackle (3.2). Note that in general, DΓ is not
symmetric and does not satisfy the triangular inequality, so that it is not a distance.
We refer to [9] for a table detailing many examples of Bregman’s divergences.

Let us write the general form of problem (3.2) as

min
π∈D

DΓ(π|ξ) + ϕ1(π) + ϕ2(π) (3.3)

where ϕ1, ϕ2 are two proper, lower-semicontinuous convex functions defined on D.
We also assume that the following qualification constraint holds

ri(dom(ϕ1)) ∩ ri(dom(ϕ2)) ∩ ri(dom(Γ)) 6= ∅. (3.4)
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where ri is the relative interior and dom(ϕ) = {π ; ϕ(π) 6= +∞}.
We define the proximal map of a convex function ϕ according to this divergence

as

ProxDΓ
ϕ (π)

def.
= argmin

π̃∈D
DΓ(π̃|π) + ϕ(π̃). (3.5)

We assume that ϕ is coercive, so that ProxDΓ
ϕ (π) is always uniquely defined by strict

convexity. Furthermore, one has ProxDΓ
ϕ (π) ∈ int(D), see [9].

Dykstra’s iterations. Dykstra’s algorithm starts by initializing

π(0) def.
= ξ and v(0) = v(−1) def.

= 0.

One then iteratively defines, for ` > 0

π(`) def.
= ProxDΓ

ϕ[`]2
(∇Γ∗(∇Γ(π(`−1)) + v(`−2))), (3.6)

v(`) def.
= v(`−2) +∇Γ(π(`−1))−∇Γ(π(`)), (3.7)

where [`]2 is defined in (1.2). Note that the iterates satisfies π(`) ∈ int(D), so that
the algorithm is well defined.

The iterates π(`) of this algorithm are known to converge to the solution of (3.3)
in the case where ϕ1 and ϕ2 are indicators of convex sets, see [9]. This corresponds to
the case where ProxDΓ

ϕi for i = 1, 2 are projectors according to the Bregman divergence.
Convergence proof. This convergence result in fact caries over to the more general

setting where (ϕ1, ϕ2) are arbitrary proper and lower-semicontinuous convex func-
tions. The proof follows from the fact that Dykstra’s iterations correspond to an
alternate block minimization algorithm on the dual problem. This idea was suggested
to us by Antonin Chambolle and Jalal Fadili.

Proposition 1. If condition (3.4) holds, then π(`) converges to the solution
of (3.3).

Proof. The dual problem to (3.3) reads

max
u1,u2

− ϕ∗1(u1)− ϕ∗2(u2)− Γ∗(α− u1 − u2)− C(ξ) (3.8)

where the constant is C(ξ)
def.
= 〈α, ξ〉 − Γ(ξ) and where we defined α

def.
= ∇Γ(ξ).

Duality means that under the domain qualification hypothesis (3.4), the minimum
value of (3.3) and the maximum value of (3.8) are the same, and that the primal
solution π can be recovered from the dual one (u1, u2) as

π = ∇Γ∗(−u1 − u2). (3.9)

Starting from (u
(0)
1 , u

(0)
2 ) = (0, 0), the alternate block optimization on (3.8) defines

a sequence (u
(`)
1 , u

(`)
2 ), where, denoting i = [`]2 (as defined in (1.2)) and j = 3 − i ∈

{1, 2}, the update at iteration ` reads

u
(`)
j

def.
= u

(`−1)
j and u

(`)
i

def.
= argmax

ui

− ϕ∗i (ui)− Γ∗(q − ui) (3.10)

where we defined q
def.
= α− u(`−1)

j .
Since in (3.8) the coupling term Γ∗(α − u1 − u2) between (u1, u2) is smooth, a

classical result ensures that (u
(`)
1 , u

(`)
2 ) converges to the solution (u?1, u

?
2) of (3.8), see

for instance [28].
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The primal problem associated to the dual maximization (3.10) is

min
πi

Γ(πi)− 〈q, πi〉+ ϕi(πi) = DΓ(πi|∇Γ∗(q)) + ϕi(πi) + C (3.11)

where C ∈ R is a constant. The primal-dual relationship between the solutions
of (3.10) and (3.11) reads

πi = ∇Γ∗(q − ui). (3.12)

Equations (3.10) and (3.12) show that one has

u
(`)
i = α− u(`−1)

j −∇Γ ◦ ProxDΓ
ϕi

(
∇Γ∗(α− u(`−1)

j )
)
. (3.13)

We now perform the following change of variables (u
(`)
1 , u

(`)
2 )→ (π(`), v(`))

π(`) =

{
∇Γ∗(α− u(`)

1 − u
(`−1)
2 ) if [`]2 = 1,

∇Γ∗(α− u(`−1)
1 − u(`)

2 ) if [`]2 = 2,
and v(`) = −u(`)

[`]2
.

One then verifies that these variables satisfy the relationship (3.7) and that (3.13) is
equivalent to (3.6). This shows by recursion that (π(`), v(`)) corresponds to Dykstra’s

variables. The convergence of (u
(`)
1 , u

(`)
2 ) toward (u?1, u

?
2) implies that π(`) converges

to π?
def.
= ∇Γ∗(α − u?1 − u?2) which is the solution of (3.3) thanks to the primal-dual

relationship (3.9).

3.3. Dykstra’s Algorithm for KL divergence. We now consider the case
where Γ = E, DΓ = KL. To ease the notations, we make the change of variables

z(`) def.
= ∇Γ(v(`)). One has that ∇Γ = log and ∇Γ∗ = exp and thus one has the

iterates

π(0) def.
= ξ and z(0) = z(−1) def.

= 1 (3.14)

∀ ` > 0, π(`) def.
= ProxKL

ϕ[`]2
(π(`−1) � z(`−2)), (3.15)

z(`) def.
= z(`−2) � π(`−1)

π(`)
. (3.16)

Recall here that � and ·· denotes entry-wise operations.

3.4. KL Proximal Operator for JKO Stepping. In order to be able to apply
iterations (3.15) and (3.16), one needs to be able to compute the proximal operator
for the KL divergence of ϕ1 and ϕ2.

The following proposition shows that these proximal operators for the KL diver-
gence can be indeed computed in closed form as long as one can compute in closed
for the proximal operator of f for the KL divergence.

Proposition 3.1. For any π ∈ RN×N+ , one has

ProxKL
ϕ1

(π) = π diag
( q

πT1

)
and ProxKL

ϕ2
(π) = diag

ProxKL
τ
γ f

(π1)

π1

π (3.17)

Proof. The computation of ProxKL
ϕ1

is obtained by combining (A.7) and (A.2) in

the special case M = 1. The computation of ProxKL
ϕ2

is obtained by applying (A.6) in
the special case of M = 1 coupling.
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3.5. Dykstra Algorithm for JKO Stepping. Writing down the first order
optimality conditions with respect to π for problem (3.1) shows that there exists
(a, b) ∈ (RN+ )2 such that the optimal π satisfies π = diag(a)ξ diag(b). It means that,
just as for the classical entropic regularization of optimal transport [31], the optimal
coupling π is a diagonal scaling of the initial Gibbs kernel ξ. This remark actually
not only holds for the optimal π, but it also holds for each iterate π(`) constructed by
iterations (3.15) and (3.16) that defines (π(`), z(`)) ∈ (RN+ )2.

The following proposition makes use of this remark and shows how to actually
implement numerically iterations (3.15) and (3.16) of the method in a fast and parallel
way using only matrix-vector multiplications against the kernel ξ.

Proposition 3.2. The iterates of Dykstra’s algorithm can be written as

π(`) = diag(a(`))ξ diag(b(`)) and z(`) = u(`)v(`),T (3.18)

(i.e. z(`) is a rank-1 matrix) where (a(`), b(`), u(`), v(`)) ∈ (RN+,∗)4, with the initializa-
tion

a(0) = b(0) = u(0) = v(0) = 1. (3.19)

For odd `, the update of (a(`), b(`)) reads

a(`) = a(`−1) � u(`−2) and b(`) =
q

ξT (a(`))
, (3.20)

while for even ` it reads

b(`) = b(`−1) � v(`−2) and a(`) =
p(`)

ξ(b(`))
, (3.21)

where we defined

p(`) def.
= ProxKL

τ
γ f

(a(`−1) � u(`−2) � ξ(b(`))). (3.22)

The update of (u(`), v(`)) is always

u(`) = u(`−2) � a(`−1)

a(`)
and v(`) = v(`−2) � b(`−1)

b(`)
. (3.23)

Proof. One verifies that the format (3.18) holds for the initialization (3.19) and
that it is maintained by the update formulas (3.17). Formulas (3.20), (3.21) and (3.23)
are obtained by identifying the different terms when plugging the format (3.18) into
the update formulas (3.17).

The Pseudo-code 1 recaps all the successive steps needed to compute the full JKO
flow (2.2) with entropic smoothing. This resolution thus only requires to iteratively
apply, until a suitable convergence criterion is met, the update rules (3.20), (3.21)
and (3.23). In practice, we found that monitoring the violation of the constraint Cq to
be both a simple and efficient way to enforce a stopping criterion This criterion allows
furthermore to precisely enforce mass conservation, i.e. pt ∈ ΣN stays normalized to
unit mass, which is important in many practical cases.

The crux of the method, that is extensively used in the numerical section (see in
particular Section 4.1) is that one only needs to know how to apply the kernel ξ and
its adjoint ξT (which are in most practical situations equals), which can be achieved
either exactly or approximately in fast and highly parallelizable manner.

10



1. Initialize t = 0 and pt=0.
2. Initialize ` = 1 and set

a(0) = b(0) = u(0) = v(0) = 1.

3. Setting q
def.
= pt, update (a(`), b(`)) using (3.20) is ` is odd, and using (3.21) if

` is even.
4. Update (u(`), v(`)) using (3.23).
5. If ||b(`) � ξT (a(`))− q|| > ε or if ` is odd, set `← `+ 1 and go back to step 3.
6. Set pt+1 = p(`) as defined by (3.22), t← t+ 1 and go back to step 2.

Pseudo-code 1: Iterations computing the full JKO flow. The inputs are the initial
density pt=0, the parameters (γ, τ) and the tolerance ε. The outputs are the iterates
(pt)t>0.

4. Numerical Results. We now illustrate the usefulness and versatility of our
approach to compute approximate solutions to various non-linear diffusion processes.
The videos showing the time evolutions displayed in the figures bellow are available
online2.

4.1. Exact and Approximate Kernel Computation. As already highlighted
in Section 3.5, our method is efficient if one can compute in a fast way the multiplica-
tion ξp between the Gibbs kernel ξ = e−c/γ and a vector p ∈ RN . In the general case,
this is intractable because this is a full matrix-vector multiplication. Even if ξ usually
has an exponential decay away from the diagonal, precisely capturing this decay is
important to achieved transportation of mass effects. In particular, truncating the
kernel to obtain a sparse matrix is prohibited.

Translation invariant metrics. The simplest setting is when the sampling points
(xi)

N
i=1 (as defined in Section 2) correspond to an uniform grid discretization of a

translation invariant distance, i.e. ci,j = D(xi − xj)α for some function D : Rd → R.
In this case, ξ is simply a discrete convolution against the kernel D(·)α sampled on an
uniform grid. For instance, whenD(·) = ||·|| and α = 2, ξ is simply a convolution with a
Gaussian kernel of width γ. When using periodic or Neumann boundary conditions, it
is thus possible to implement this convolution in O(N log(N)) operations using Fast
Fourier Transforms (FFT’s). There also exists a flurry of linear time approximate
convolutions, the most popular one being Deriche’s factorization with IIR filters [35].
We used this method to generate Figures 4.1 and 4.6. The other figures require a
more advanced treatment because the kernel is not translation invariant. We now
detail this approach.

Riemannian metrics. Unfortunately, many case of practical interest correspond
to diffusions inside non-convex domains, or even on non-Euclidean domains, typically
a Riemannian manifold M (possibly with a boundary). In this setting, the natural
choice for the ground cost c is to set ci,j = dM(xi, xj)

α, where dM is the geodesic
distance on the manifold. A major issue is that computing this matrix c is costly,
for instance it would take O(N2 log(N)) using Fast-Marching technics [57] on a grid
or a triangulated mesh of N points. Even storing this non-sparse matrix can be
prohibitive, and applying it at each step of the Dykstra algorithm would require
O(N2) operations. Inspired by the “geodesic in heat” method of [29], it has recently
been proposed by [62] to speed up these computations by approximating the kernel ξ
by a Laplace or a heat kernel ξ̃ (depending on wether α = 1 or α = 2). This means

2https://github.com/gpeyre/2015-SIIMS-wasserstein-jko/tree/master/videos
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that c does not need to be pre-computed and stored, and that, as explained bellow,
one can apply it on the fly at each iteration using a fast sparse linear solver. In the
numerical tests, we have used this approximation.

To this end, one only needs to have at its disposal a discrete approximation ∆M
of the Laplacian operator on the manifold M. This is easily achieved using axis-
aligned finite differences for manifold discretized on a rectangular grid, and this is
the case for Figures 4.2. When considering a discretized manifold M which is a
triangulated surface (as this is the case for Figure 4.3), one can use piecewise linear
P1 finite elements, and the operator ∆M is then the popular Laplacian with cotangent
weights, see [17].

Following [62], the kernel ξ is then approximated using L ∈ N∗ steps of implicit
Euler time discretization of the resolution of the heat equation on M until time γ,
i.e.

ξ ≈ ξ̃ def.
=
(

Id− γ

L
∆M

)−L
(4.1)

where (·)−L means that one iterates L times matrix inversion.
When L = 1, and ignoring discretization errors, the result of Varadhan [63] shows

that in the limit of small γ, ξ̃ converges to the kernel ξ obtained when using α = 1
(i.e. “W1” optimal transport). As L increases, ξ̃ converges to the heat kernel, which
can be shown, also using [63] to be consistent with the case α = 2 (i.e. “W2” optimal
transport). In the numerical tests, we have used L = 10.

Numerically, the computation of matrix/vector multiplications ξ̃p appearing the
Dykstra updates thus requires the resolution of L linear systems. Since these ma-
trix/vector multiplications are computed many times during the iterations, a consid-
erable speed-up is achieved by first pre-computing a sparse Cholesky factorization of
Id− γ

L∆M and then solving the L linear systems by back-substitution [33]. Although
there is no theoretical guarantees, we observed numerically that each step typically
has a linear time complexity because the factorization is indeed highly sparse. We
refer to [29] for an experimental analysis of this class of Laplacian solvers.

4.2. Crowd Motion Model. To model crowd motion, we follow [49], where
a congestion effect (not too many peoples can be at the same position) is enforced
by imposing that the density p of peoples follows a JKO flow with the functional f
defined as

∀ p ∈ RN , f(p)
def.
= ι[0,κ]N (p) + 〈w, p〉 (4.2)

where κ > ||pt=0||∞ is the congestion parameter (the smaller, the more congestion)
and w ∈ RN is a potential (the mass should move along the gradient of w).

For such a function, the KL proximal operator is easy to compute, as detailed in
the following proposition.

Proposition 2. One has

∀ p ∈ RN , ProxKL
σf (p) = min(p� e−σw, κ) (4.3)

where the min should be understood components-wise.
Proof. The formula when w = 0 is easy to show, and one then apply (A.3) in the

case M = 1.
Note that it is of course possible to consider a κ that is spatially varying to model

a non-homogeneous congestion effect.
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t = 0 t = 10 t = 20 t = 30 t = 40

Fig. 4.1. Display of the influence of the congestion parameter κ on the evolution (the driving
potential w is displayed on the upper-right corner of Figure 4.2). From top to bottom, the parameters
are set to κ/||pt=0||∞ ∈ {1, 2, 4}}.

Figure 4.1 shows the influence of the congestion parameter κ. This figure is
obtained for the quadratic Euclidean cost ci,j = ||xi − xj ||2 on a N = 200 × 200
uniform grid with Neumann boundary conditions. The kernel ξ is computed using a
fast Gaussian filtering on this grid as detailed in Section 4.1.

Figure 4.2 shows various evolutions for different potentials w (guiding the crowd
to the exit) on a manifold M which is a sub-set of a square in R2. This means that
locally the Riemannian metric is Euclidean, but since the domain is non-convex, the
transport is defined according to a geodesic distance dM which is not the Euclidean
distance. The discretization is achieved using the approximate heat kernel (4.1) with
L = 10 and on a grid of N = 100× 100 points.

Lastly Figure 4.3 shows the evolution on a triangulated mesh of 20000 vertices,
which is also implemented using the same heat kernel, but this time on a 3-D triangu-
lation using piecewise linear finite elements (hence a discrete Laplacian with cotangent
weights [17]).

4.3. Anisotropic Diffusion Kernels. We consider the crowd motion func-
tional (4.2) over measures defined on M = R2 now equipped with a Riemannian
manifold structure defined by some tensor field T (x) ∈ Rd×d of symmetric positive
matrices. We use the heat kernel approximation detailed in Section 4.1. The ker-
nel (4.1) thus corresponds to a discretization of an anisotropic diffusion, which are
routinely used to perform image restoration [66]. As the anisotropy (i.e. the maxi-
mum ratio between the maximum and minium eigenvalues) of the tensors increases,
the corresponding linear PDE becomes ill-posed, and traditional discretizations using
finite differences are inconsistent, leading to unacceptable artifacts. We thus use the
adaptive anisotropic stencils recently proposed in [39] to define the sparse Laplacian
matrix discretizing the manifold Laplacian ∆Mu(x) = div(T (x)∇u(x)). This discrete
Laplacian is able to cope with highly anisotropic tensor fields. This is illustrated
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t = 0 t = 10 t = 20 t = 30 t = 40 cos(w)

Fig. 4.2. Display of crowd evolution for κ = ||pt=0||∞. The rightmost column display equispaced
level-sets of the driving potential w.

cos(w) t = 0 t = 15 t = 30 t = 45

Fig. 4.3. Display of the evolution pt on a triangulated surface. From top to bottom, the
congestion parameter is set to κ/||pt=0||∞ ∈ {1, 6}}.
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in Figure 4.4, which shows the impact of the anisotropy on the trajectory of the
mass. The potential w creates an horizontal movement of the mass, but the circular
shape of the tensor orientations forces the mass to rather follow a curved trajectory.
Ultimately, mass accumulates on the left side and the congestion effect appears.

t = 0 t = 15 t = 30 t = 45 t = 60 cos(w), T

Fig. 4.4. Display of the evolution pt using anisotropic diffusion kernels. The right column
displays in the background the level-sets of w and the tensor field T (x) displayed as red ellipsoids.
An ellipsoid at point x is oriented along the principal axis of T (x), and the length/width ratio is
proportional to the anisotropy of T (x). The metric thus favors mass movements along the direction
of the ellipsoids. The anisotropy (ratio between maximum and minimum eigenvalues of T (x)) is set
respectively from top to bottom to {2, 10, 30} in each of the successive rows.

4.4. Non-linear Diffusions. To model non-linear diffusion equations, we con-
sider (possibly space-varying) generalized entropies

f(p)
def.
=
∑
i

biemi(pi) where ∀m > 1, em(s)
def.
=

{
s(log(s)− 1) if m = 1,

s s
m−1−m
m−1 if m > 1.

(4.4)
Here (bi)

N
i=1 is a set of weights bi > 0 that enable a specially varying diffusion strength,

while (mi)
N
i=1 is a set of exponents that enable to make the evolution more non-linear

at certain locations. Note that the case m = 1 corresponds to minus the entropy
defined in (1.3).

In the case of constant weights b and exponents m, the gradient flows of these
functionals lead to non-linear diffusions of the form ∂tp = ∆pm. The case m = 1
is the usual linear heat diffusion, as considered in the initial work of [43]. The case
m = 2 is the so-called porous medium equation [51], where diffusion is slower in areas
where the density p is small. In particular, solutions might have a compact support
that evolves in time, on contrary to the linear heat diffusion where mass can travel
with infinite speed.

The following proposition, whose proof follows from writing the first order condi-
tion of (3.5), details how to compute the proximal operator of h.

Proposition 3. The proximal operator of f satisfies

ProxKL
σf (r) = (ProxKL

σbiemi
(ri))

N
i=1.

15



For m = 1, the proximal operator of e1 reads

∀ s > 0, ProxKL
σe1(s) = s

1
1+σ . (4.5)

If m 6= 1, then for any s > 0, ProxKL
σem(s) = ψ is the unique positive root of the

equation

log(ψ) +mσ
ψm−1 − 1

m− 1
= log(s) (4.6)

In the numerical applications, we compute ProxKL
σem by using a few steps of New-

ton iterations to solve (4.6), which can be parallelized over all the grid’s locations.
Figure 4.5 shows examples of the energy em and the corresponding proximal maps
ProxKL

σem . They act as pointwise non-linear thresholding operators that are applied
iteratively on the probability distribution being computed. In some sense, the con-
gestion term (4.2) and the corresponding proximal operator (4.3) can be understood
as a limit of this model as m→ +∞.

0 0.5 1 1.5 2
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em ProxKL
σem , σ = 1 ProxKL

σem , σ = 3

Fig. 4.5. Display of the graphs of functions em and ProxKL
σem

for some values of (σ,m).

Figure (4.6) shows illustration of the models in the case where either b or m is
varying, thus producing a spatially varying flow. The initial distribution pt=0 is com-
puted as a white noise realization, where the pixels are independently and identically
drawn according to a uniform distribution on [0, 1] (and then p is normalized to unit
mass).

4.5. Non-convex Functionals. It is formally possible to apply Dykstra’s algo-
rithm detailed in Section 3.4 to a non-convex function f , if one is able to compute in
closed form the proximal operator (3.5) (which then might be a multi-valued map).
Of course there is no hope for the resulting non-convex Dykstra’s algorithm to con-
verge in general to the global minimizer of the non-convex optimization (3.2). Even
worse, to the best of our knowledge, there is currently no proof that the non-convex
Dykstra’s algorithm converges to a stationary point of the energy, even in the case
of an Euclidean divergence. However, we found that applying Dykstra’s algorithm
to non-convex functions works remarkably well in practice. Note that the closely
related Douglas-Rachford (DR) algorithm is known to converge in some particular
non-convex cases [5]. DR is known to perform very well on several non-convex opti-
mization problems such as phase retrieval [8].

To test this non-convex setting, we replace the congestion box constraint (4.2) by
the non-convex function

f(p)
def.
= ι{0,κ}N + 〈w, p〉. (4.7)
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t = 0 t = 10 t = 20 t = 30 t = 40

Fig. 4.6. Non-linear diffusion by gradient flow on the generalized entropies (4.4). Top row:
fixed mi = 1.4 and varying weights bi ∈ [1, 20] (1 in the boundary, 20 in the center). Bottom row:
fixed bi = 1 and varying exponents mi ∈ [1, 2] (1 in the boundary, 2 in the center).

This function enforces that the thought after solution is binary, so that each value
pi is in {0, κ}. The proximal operator of this non-convex function can be computed
explicitly using

∀ i ∈ {1, . . . , N}, ProxKL
σι{0,κ}N

(p)i =

 0 if pi < κ/e,
{0, κ} if pi = κ/e,
κ if pi > κ/e,

where e = exp(1). Note that ProxKL
σι{0,κ}N

(p)i is multi-valued at pi = κ/e, and numer-

ically one needs to chose one of the two values. Figure 4.7 shows a comparison of the
evolutions obtained with the convex and non-convex functionals. The non-convex one
suffers from binary noise artefacts, which could be partly due to the non-convexity,
but also to the amplification of discretization errors by the proximal mapping which
is not Lipschitz continuous.

t = 0 t = 10 t = 20 t = 30 t = 40

Fig. 4.7. Display of crowd evolution for κ = ||pt=0||∞. Top row: convex function (4.2). Bottom
row: non-convex function (4.7).

5. More General Functionals. In order to highlight the power of the proposed
entropic regularization approach, we show here how to adapt the algorithm detailed
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in Section 3 in order to deal with more involved functionals. These functionals require
the introduction of several couplings, which in turn necessitates to develop a generic
iterative scaling procedure derived from Dykstra’s algorithm. This new method has
its own interest, beyond the computation of Wasserstein gradient flows.

5.1. A Generic Diagonal Scaling Algorithm. In order to tackle a more
general class of functions f , we consider here a generalization of problem (3.2) where
one wants to optimize over a family π = (π1, . . . , πM ) of M couplings πm ∈ RN×N a
functional of the form

min
π∈(RN×N )M

KLλ(π|ξ) + ϕ1(π) + ϕ2(π) where

{
ϕ1(π)

def.
= ψ1(π1),

ϕ2(π)
def.
= ψ2(πT1),

(5.1)

where, for λ ∈ RM+ , KLλ is the weighted KL divergence (see also (A.1))

∀ (π, ξ) ∈ (RN×N )M × (RN×N )M , KLλ(π|ξ) =

M∑
m=1

λm KL(πm|ξm)

and where we denoted, with a slight abuse of notations, the collection of left and right
marginals as

π1 = (π11, . . . , πM1) ∈ (RN )M and πT1 = (πT1 1, . . . , π
T
M1) ∈ (RN )M

and ψi : (RN )M → R are convex functions for which one can compute the proximal

operator ProxKLλ
ψi

according to the KLλ divergence.

We wish to apply Dykstra’s iterations (3.15) and (3.16) to (5.1). This requires to
compute the proximal operator of the functions ϕi. The following proposition details
how to achieve this using the proximal operator of the functions ψi alone.

Proposition 5.1. We denote, for i = 1, 2, π[i] def.
= ProxKLλ

ϕi (π). We denote, for

m = 1, . . . ,M , p̃
[1]
m

def.
= πm1 and p̃

[2]
m

def.
= πTm1. One has

∀m ∈ {1, . . . ,M}, π[1]
m = diag

(
p

[1]
m

p̃
[1]
m

)
πm and π[2]

m = πm diag

(
p

[2]
m

p̃
[2]
m

)
where ∀ i ∈ {1, 2}, (p[i])m = ProxKLλ

ψi

(
(p̃[i])m

)
.

Proof. This corresponds to an application of formulas (A.6) and (A.7).

The following proposition, which is similar to Proposition 3.2, explains how to
implement the iterations of Dykstra’s algorithm using only multiplications with the
kernels (ξm)m.

Proposition 5.2. The iterates π(`) = (π
(`)
1 , . . . , π

(`)
M ) of Dykstra’s algorithm can

be written as

∀m ∈ {1, . . . ,M}, π(`)
m = diag(a(`)

m )ξm diag(b(`)m ) and z(`)
m = u(`)

m v(`),T
m .

with the initialization

∀m ∈ {1, . . . ,M}, a(0)
m = b(0)

m = u(0)
m = v(0)

m
def.
= 1.
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We define, ∀m ∈ {1, . . . ,M},

ã(`−1)
m

def.
= a(`−1)

m � u(`−2)
m and b̃(`−1)

m
def.
= b(`−1)

m � v(`−2)
m ,

(pm)m
def.
= ProxKLλ

ψ[`]2
((p̃m)m) where p̃m

def.
=

{
ã

(`−1)
m � ξm(b̃

(`−1)
m ) if [`]2 = 1,

b̃
(`−1)
m � ξTm(ã

(`−1)
m ) if [`]2 = 2.

The update reads, ∀m ∈ {1, . . . ,M},

a(`)
m

def.
=

{
pm � [ξm(b̃

(`−1)
m )]−1 if [`]2 = 1

ã
(`−1)
m if [`]2 = 2

b(`)m
def.
=

{
b̃
(`−1)
m if [`]2 = 1

pm � [ξTm(ã
(`−1)
m )]−1 if [`]2 = 2

u(`)
m

def.
= u(`−2)

m � a
(`−1)
m

a
(`)
m

and v(`)
m

def.
= v(`−2)

m � b
(`−1)
m

b
(`)
m

.

5.2. Wasserstein Attraction with Congestion. We now give a first concrete
example of functional f for which the formulation (5.1) should be used in place of (3.2).

Instead of advecting the mass of pt according to a fixed potential w as it is
considered in the functional (4.2), it is possible to make it evolve toward a “target”
distribution r ∈ ΣN by minimizing the Wasserstein distance between pt and r. It
thus consists in considering the gradient flow of the function

∀ p ∈ ΣN , f(p) = Wγ(r, p) + h(p) + ιΣN (p), (5.2)

where h(p) is a function for which one can compute its KL proximal operator as
defined in (2.3).

We now denote q
def.
= pt the previous iterate, and aim at solving a single JKO

step (3.1). It is not possible to compute in closed form the KL proximal operator
of the function f defined in (5.2), so that the algorithm detailed in Section 3 is not
directly applicable.

Instead, we re-formulate (3.1) as a KL minimization of the form (5.1) involving

M = 2 couplings π = (π1, π2) ∈ (RN×N )2 and kernels ξ = (ξ1, ξ2)
def.
= (e−c/γ , e−c/γ).

This encodes implicitly the solution p = π11 = π21 of (3.1) using the solution π =
(π1, π2) of (5.1) when introducing the functions

ψ1(p1, p2) = ιD(p1, p2) + h(p1) where D = {(p1, p2) ; p1 = p2} ,
ψ2(p1, p2) = ι{q,r}(p1, p2),

and the weights λ = (1, τ) ∈ R2
+. The following proposition details how to compute

the proximal operator of these functionals. It is important to remind that that these
functionals as well as their respective proximal operators operate on vectors of RN ,
not on couplings.

Proposition 5.3. One has

ProxKLλ
ψ1

(p1, p2) = (p, p) where p = ProxKL
1

1+τ h

(
p

1
1+τ

1 � p
τ

1+τ

2

)
(5.3)

ProxKLλ
ψ2

(p1, p2) = (q, r) (5.4)
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Proof. The computation of ProxKLλ
ψ1

follows from (A.4). The computation of

ProxKLλ
ψ2

follows from (A.2).
With these proximal maps at hands, and with the formula for the iterations

detailed in Proposition 5.2, one can solve for each JKO step by computing the optimal

(π1, π2) using q
def.
= pt and then updating pt+1

def.
= π11 = π21.

Numerical Illustrations. In order to introduce some congestion, we consider here
the function h(p) = ι[0,κ]N , as in (4.2), and its KL proximal operator is computed as
detailed in (4.3).

Figure 5.1 shows some examples of such a JKO flows computed on a rectangular
grid of N = 100×100 points. The right hand side column shows the target distribution
r. Note that the flow pt typically does not converge toward r as t→ +∞, because of
the congestion effect.

t = 0 t = 10 t = 20 t = 30 t = 40 r

Fig. 5.1. Examples of gradient flows for the Wasserstein attraction toward the density r dis-
played on the right column. The congestion parameter is set to κ = ||pt=0||∞.

5.3. Multiple Densities Evolutions. A natural extension of the JKO flow (2.2)
is to describe the evolution of a finite family of densities pt = (pi,t)i by minimizing a
function f((pi)i), where one defines the transport distance as the sum of independent
Wasserstein distances

Wγ((pi)i, (qi)i)
def.
=
∑
i

Wγ(pi, qi).

The function f thus introduce a coupling between densities during the evolution. For
simplicity we consider in the following the case of 2 densities.

Wasserstein pairwise attraction. We first consider the case where the coupling is
a Wasserstein attraction between the two densities

f(p1, p2) = αW (p1, p2) + h1(p1) + h1(p2)

where the functions hi are “simple” so that one can compute easily ProxKL
hi .
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Denoting q = (q1, q2)
def.
= (p1,t, p2,t) the previous iterate at time t, the solution

p = pt+1 to the JKO step (3.1) can be written as

p = (p1, p2) = (π11, π21) = (πT3 1, π
T
3 1),

where one needs to solve for M = 3 couplings (π1, π2, π3) the problem (5.1) with the
functionals

ψ1(a1, a2, a3) = ιD(a1, a3) + ι{q2}(a2) +
τ

γ
h1(a1),

ψ2(a1, a2, a3) = ιD(a2, a3) + ι{q1}(a1) +
τ

γ
h2(a2)

with KL weights λ = (1, 1, τα). The proximal operators of these functions are easy
to compute as detailed in the following proposition.

Proposition 4. For i ∈ {1, 2}, denoting j = 3− i ∈ {1, 2}, one has

(bm)m = ProxKLλ
ψi

(am)m where bi = b3 = Proxhi(a
1

1+τα

i � a
τ

1+τα

3 ), bj = qj .

Proof. The expression for (bi, b3) is obtained by using (A.4). The expression for
bj is obtained by using (A.2).

In the numerical example, we used hi(pi)
def.
= ι[0,κ]N (pi) + 〈wi, pi〉 for potentials

(w1, w2) ∈ RN ×RN . The KL proximal operator of these functions can be computed
as detailed in Proposition 2. Figure 5.2 displays the results obtained on a rectangular
grid of N = 200× 200 points.

t = 0 t = 10 t = 20 t = 30 t = 40

Fig. 5.2. Evolution with a pairwise attraction between two densities, with congestion parameter
κ = ||p1,t=0||∞ = ||p2,t=0||∞. Display of both p1,t (red) and p2,t (green), yellow indicates a mixing.
Top row: α = 1. Bottom row: α = 3.

Summation couplings. Another way to introduce some interaction between p1 and
p2 is to consider a coupling on the sum

f(p1, p2)
def.
= h(p1 + p2) + 〈p1, w1〉+ 〈p2, w2〉.

for some function h for which one can compute easily ProxKL
h .
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In this case, the solution p = pt+1 to the JKO step (3.1) can be written as
p = (p1, p2) = (π11, π21) where the M = 2 couplings (π1, π2) solves problem (5.1)
with the functionals

ψ1(a1, a2) =
τ

γ
f(a1, a2),

ψ2(a1, a2) = ι{q1,q2}(a1, a2)

and weights λ = (1, 1). The proximal operators of the functions are easy to compute
as detailed in the following proposition.

Proposition 5. One has

ProxKLλ
ψ1

(a1, a2) =
Prox τ

γ h
(ã1 + ã2)

ã1 + ã2
� (ã1, ã2)

ProxKLλ
ψ2

(a1, a2) = (q1, q2).

where ãi = ai � e−
τ
γwi

Proof. The expression for ProxKLλ
ψ1

is obtained by combining (A.3) and (A.6).

The expression for ProxKLλ
ψ2

is obtained by using (A.2).

t = 0 t = 10 t = 20 t = 30 t = 40

Fig. 5.3. Evolution with a summation coupling E(p1 + p2). Top row: display of both p1 (red)
and p2 (green), yellow indicates a mixing. Middle row: display of p1 + p2, which evolves according
to a linear heat diffusion. Bottom row: display of p1.

As a first example, we consider an entropic coupling h = E, with w1 = w2 = 0.
Its proximal operator is computed in (4.5). A formal computation shows that, for the
Euclidean W2 transport on Rd, the corresponding discrete JKO steps (2.2) is intended
at approximating the non-linear PDE over pt = (p1,t, p2,t)

∀ i ∈ {1, 2}, ∀ t > 0, ∂tpi,t = div

(
pi,t

p1,t + p2,t
∇pi,t

)
.
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This shows that while pt follows a non-linear coupled diffusion, p1,t + p2,t follows a
linear heat diffusion. Figure 5.3 shows a numerical illustration on a regular grid of
N = 200× 200 points.

As a second example, we consider a congestion coupling h = ι[0,κ]N . Its proximal
operator is computed in (4.3). Figure 5.4 shows a numerical illustration on a regular
grid of N = 200 × 200 points. It shows two densities, initially supported on non-
overlapping squares, moving in opposite directions under potentials (w1, w2) such that
∇w1 = (1, 0)T and ∇w2 = (−1, 0)T (constant horizontal gradients). A congestion
shock is created by the overlap of the densities, which in turn forces the support of
the densities to be deformed and vertically enlarged.

t = 0 t = 10 t = 20 t = 30 t = 40

Fig. 5.4. Evolution with a summation coupling ι[0,κ]N (p1 + p2) where κ = ||p1,t=0||∞ =

||p2,t=0||∞. Top row: display of both p1,t (red) and p2,t (green), yellow indicates a mixing. Middle
row: display of p1,t + p2,t. Bottom row: display of p1,t.

Discussion and Conclusion. In this paper, we have presented a novel al-
gorithm to compute approximate discrete gradient flows according to an entropic
smoothing of the Wasserstein distance. The main interest of the method is its speed,
simplicity and versatility. This is achieved because the iterations only require (beside
pointwise multiplications, divisions and exponentiations) to compute the successive
applications of a “convolution-like” operator corresponding to the Gibbs kernel asso-
ciated to the metric.

A natural question is to explore whether the discrete flow defined by (2.2) has a
continuous limit when τt = τ → 0. If one uses a fixed γt = γ > 0, this is not the case,
because Wγ does not satisfies Wγ(p, p) = 0. More precisely, one has that

argmin
q

Wγ(p, q) = ξ

(
p

ξT (p)

)
,

so that the limit for small τ of pt+1 defined by (2.2) is a blurred (i.e. multiplied by
ξ) version of pt. Instead of using a fixed value for γt, choosing γt = γ(τt) for some
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carefully chosen function of τt could allow the discrete flow to converge to the usual
Wasserstein flow. We leave the analysis of this asymptotic setting to a future work.
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Appendix A. KL Proximal Calculus.
The following proposition details some useful property of the KL proximal op-

erator (2.3). This enables a powerful “proximal calculus” by combining these rules,
which eases and simplifies the implementation of the algorithms. Note that we also
consider generalized KL divergence over sets (p1, . . . , pM ) of M densities according to
some weight λ ∈ RM+

∀ (pm)m, (qm)m, KLλ((pm)m|(qm)m)
def.
=

M∑
m=1

λmKL(pm|qm). (A.1)

Proposition A.1. For f(p1, . . . , pM )
def.
= ι{(q1,...,qM )}(p1, . . . , pM ), one has

ProxKLλ
f (p1, . . . , pM ) = (q1, . . . , qM ). (A.2)

For f(p1, . . . , pM )
def.
= h(p1, . . . , pM ) +

∑M
i=1〈wi, pi〉, one has

ProxKLλ
f (p1, . . . , pM ) = ProxKLλ

h (p1 � e−w1/λ1 , . . . , pM � e−wM/λM ). (A.3)

For f(p1, . . . , pM )
def.
= ιD(p1, . . . , pM ) + h(p1, . . . , pM ) where

D def.
= {(p1, . . . , pM ) ; p1 = . . . = pM} ,

one has

ProxKLλ
f (p1, . . . , pM ) = (p, . . . , p) where p = ProxKL

1∑
i λi

h̃

(
pλ̃1

1 � . . .� p
λ̃M
M

)
, (A.4)

where we denoted λ̃i
def.
= λi/

∑
j λj and h̃(p) = h(p, . . . , p).

For f(p1, . . . , pM )
def.
= h(p1 + . . .+ pM ) and λ

def.
= (1, . . . , 1), one has

ProxKLλ
f (p1, . . . , pM ) =

ProxKL
h (p1 + . . .+ pM )

p1 + . . .+ pM
(p1, . . . , pM ) (A.5)

We define f(π1, . . . , πM )
def.
= h(π11, . . . , πM1). We denote

∀m ∈ {1, . . . ,M}, pm
def.
= πm1 and (p̃1, . . . , p̃M )

def.
= ProxKLλ

h (p1, . . . , pM ).

One has

ProxKLλ
f (π1, . . . , πM ) =

(
diag

(
p̃m
pm

)
π

)
m

(A.6)
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We define f(π1, . . . , πM )
def.
= h(πT1 1, . . . , π

T
M1). We denote

∀m ∈ {1, . . . ,M}, pm
def.
= πTm1 and (p̃1, . . . , p̃M )

def.
= ProxKLλ

h (p1, . . . , pM ).

One has

ProxKLλ
f (π1, . . . , πM ) =

(
π diag

(
p̃m
pm

))
m

(A.7)

Proof. Proof of (A.2). This is straightforward.
Proof of (A.3). If follows from the relation

KLλ((q1, . . . , qM )|(p1, . . . , pM )) +

M∑
i=1

〈wi, qi〉

=KLλ((q1, . . . , qM )|(p1 � e−w1/λ1 , . . . , pM � e−wM/λM )).

Proof of (A.4). We denote (qm)m
def.
= ProxKLλ

ψ1
((pm)m), so that q = q1 = . . . = qM

solves

min
q

∑
m

λmKL(q|pm) + h̃(q).

The result follow from the relation∑
m

λmKL(q|pm) = (
∑
m λm) KL

(
q|pλ̃1

1 � . . .� p
λ̃M
M

)
.

Proof of (A.5). Denoting (qm)m = ProxKLλ
f ((pm)m), the first order optimality

condition for ProxKLλ
f reads

∀m ∈ {1, . . . ,M}, log

(
qm
pm

)
+ u = 0

where u ∈ ∂h(p1 + . . .+ pM ). respectively summing and subtracting these equations
lead to

q1 + . . .+ qM = Proxh(p1 + . . .+ pM ) and
q1

p1
= . . . =

qm
pm

.

Solving for (q1, . . . , qm) in these equations leads to the desired solution.
Proof of (A.6). The first order condition for π̃ being a solution of (3.5) states the
existence of (zm)m ∈ ∂f(p̃1, . . . , p̃M ) where p̃m = π̃m1 such that

λm log

(
π̃m
πm

)
+ zm1

T = 0 ⇒ π̃m = diag(e−zm/λm)πm ⇒ p̃m = diag(e−zm/λm)pm,

which corresponds to the first order condition for (p̃m)m being a solution of (2.3) for
the function h, i.e.

(p̃m)m = ProxKL
h ((pm)m).

Finally, one obtains

π̃m = diag(e−zm/λm)πm = diag

(
p̃m
pm

)
πm

and hence the desired result.
Proof of (A.7). It is obtained by transposing formula (A.6).
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